Product Code Database
Example Keywords: itunes -mobile $15
barcode-scavenger
   » » Wiki: Trojan (celestial Body)
Tag Wiki 'Trojan (celestial Body)'.
Tag

Trojan (celestial body)
 (

In , a trojan is a small (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its and . Trojans can share the orbits of or of large moons.

Trojans are one type of co-orbital object. In this arrangement, a star and a planet orbit about their common , which is close to the center of the star because it is usually much more massive than the orbiting planet. In turn, a much smaller mass than both the star and the planet, located at one of the Lagrangian points of the star–planet system, is subject to a combined gravitational force that acts through this barycenter. Hence the smallest object orbits around the barycenter with the same as the planet, and the arrangement can remain stable over time.

(2025). 9783642044571, Springer.

In the Solar System, most known trojans share the . They are divided into the at (ahead of Jupiter) and the at (trailing Jupiter). More than a million Jupiter trojans larger than one kilometer are thought to exist, of which more than 7,000 are currently catalogued. In other planetary orbits only nine , 31 , two , two , and one Saturn trojan have been found to date. A temporary Venus trojan is also known. Numerical orbital dynamics stability simulations indicate that Saturn probably does not have any primordial trojans.

The same arrangement can appear when the primary object is a planet and the secondary is one of its moons, whereby much smaller can share its orbit. All known trojan moons are part of the Saturn system. Telesto and Calypso are trojans of Tethys, and Helene and Polydeuces of Dione.


Trojan minor planets
are seen in this graphic as at ahead of Jupiter and as at trailing Jupiter along its orbital path. It also shows the between and and the .
]]

In 1772, the Italian–French and Joseph-Louis Lagrange obtained two constant-pattern solutions (collinear and equilateral) of the general three-body problem. In the restricted three-body problem, with one mass negligible (which Lagrange did not consider), the five possible positions of that mass are now termed .

The term "trojan" originally referred to the "trojan asteroids" () that orbit close to the Lagrangian points of Jupiter. These have long been named for figures from the of . By convention, the asteroids orbiting near the point of Jupiter are named for the characters from the Greek side of the war, whereas those orbiting near the of Jupiter are from the Trojan side. There are two exceptions, named before the convention was adopted: 624 Hektor in the L4 group, and 617 Patroclus in the L5 group.

Astronomers estimate that the are about as numerous as the asteroids of the .

Later on, objects were found orbiting near the Lagrangian points of , , , , and . Minor planets at the Lagrangian points of planets other than Jupiter may be called Lagrangian minor planets.

  • Four are known: 5261 Eureka, , , and – the only Trojan body in the leading "cloud" at , There seem to be, also, , , and , but these have not yet been accepted by the Minor Planet Center.
  • There are 28 known , but the large Neptunian trojans are expected to outnumber the large Jovian trojans by an order of magnitude.
  • was confirmed to be the first known in 2011. It is located in the Lagrangian point, which lies ahead of the Earth. was found to be another Earth trojan in 2021. It is also at L4.
  • was identified as the first in 2013. It is located at the Lagrangian point. A second one, , was announced in 2017.
  • is a temporary Venusian trojan, the first one to be identified.
  • The large asteroids Ceres and Vesta have temporary trojans.
  • has 1 known trojan in the L4 Lagrangian Point, 2019 UO14.


Trojans by planet


Stability
Whether or not a system of star, planet, and trojan is stable depends on how large the perturbations are to which it is subject. If, for example, the planet is the mass of Earth, and there is also a Jupiter-mass object orbiting that star, the trojan's orbit would be much less stable than if the second planet had the mass of Pluto.

As a rule of thumb, the system is likely to be long-lived if m1 > 100 m2 > 10,000 m3 (in which m1, m2, and m3 are the masses of the star, planet, and trojan).

More formally, in a three-body system with circular orbits, the stability condition is 27( m1 m2 + m2 m3 + m3 m1) < ( m1 + m2 + m3)2. So the trojan being a mote of dust, m3→0, imposes a lower bound on of ≈ 24.9599. And if the star were hyper-massive, m1→+∞, then under Newtonian gravity, the system is stable whatever the planet and trojan masses. And if = , then both must exceed 13+√168 ≈ 25.9615. However, this all assumes a three-body system; once other bodies are introduced, even if distant and small, stability of the system requires even larger ratios.


See also
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs